Enhancing the output current of a CdTe solar cell via a CN-free hydrocarbon luminescent down-shifting fluorophore with intramolecular energy transfer and restricted internal rotation characteristics.

نویسندگان

  • Yilin Li
  • Joseph Olsen
  • Wen-Ji Dong
چکیده

A CN-free hydrocarbon fluorophore (Perylene-TPE) was synthesized as a new luminescent down-shifting (LDS) material. Its photophysical properties in both the solution state and the solid state were studied. The unity fluorescence quantum yield of Perylene-TPE observed in its solid state is considered to be from the characteristics of intramolecular energy transfer (IET) and restricted internal rotation (RIR). This is supported by the results from theoretical calculations and spectroscopic measurements. For the photovoltaic application of Perylene-TPE, a theoretical modeling study suggests that using the LDS film of Perylene-TPE may increase the output short circuit current density (Jsc) of a CdTe solar cell by 2.95%, enhance the spectral response of a CdTe solar cell at 400 nm by 41%, and shift the incident solar photon distribution from short-wavelength (<500 nm) to long-wavelength (>500 nm). Experimentally, placing a LDS film of Perylene-TPE on a CdTe solar cell can enhance its output Jsc by as high as 3.30 ± 0.31%, which is comparable to the current commercially available LDS material – Y083 (3.28% ± 0.37%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units.

A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photoph...

متن کامل

Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application

CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...

متن کامل

The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency

 Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...

متن کامل

Improving the performance of cadmium telluride solar cell (CdTe) with different buffer layers

In this paper, the performance of the buffer layer of Cadmium Telluride (CdTe) thin film solar cell was optimized using SCAPS software. At first, five different buffer layers including CdS, In2S3, ZnO, ZnSe and ZnS with variable thicknesses from 10 to 100 nm have been replaced in the structure of the solar cell and it has been observed. As the thickness of the buffer layer is increased, the eff...

متن کامل

Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells

Effects of temperature on electrical parameters of polysilicon solar cells, fabricated using the phosphorous spin-on diffusion technique, have been studied. The current density–voltagecharacteristics of polycrystalline silicon solar cells were measured in dark at different temperaturelevels. For this purpose, a diode equivalent model was used to obtain saturation current densi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2015